By Topic

A genetic algorithm for shortest path routing problem and the sizing of populations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chang Wook Ahn ; Dept. of Inf. & Commun., Kwangju Inst. of Sci. & Technol., South Korea ; Ramakrishna, R.S.

This paper presents a genetic algorithmic approach to the shortest path (SP) routing problem. Variable-length chromosomes (strings) and their genes (parameters) have been used for encoding the problem. The crossover operation exchanges partial chromosomes (partial routes) at positionally independent crossing sites and the mutation operation maintains the genetic diversity of the population. The proposed algorithm can cure all the infeasible chromosomes with a simple repair function. Crossover and mutation together provide a search capability that results in improved quality of solution and enhanced rate of convergence. This paper also develops a population-sizing equation that facilitates a solution with desired quality. It is based on the gambler ruin model; the equation has been further enhanced and generalized. The equation relates the size of the population, quality of solution, cardinality of the alphabet, and other parameters of the proposed algorithm. Computer simulations show that the proposed algorithm exhibits a much better quality of solution (route optimality) and a much higher rate of convergence than other algorithms. The results are relatively independent of problem types for almost all source-destination pairs. Furthermore, simulation studies emphasize the usefulness of the population-sizing equation. The equation scales to larger networks. It is felt that it can be used for determining an adequate population size in the SP routing problem.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:6 ,  Issue: 6 )