By Topic

Analysis of Optically Controlled Microwave/Millimeter-Wave Device Structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Light-induced voltage and the change in the source-to-drain channel current under optical illumination higher than the semiconductor band gap for GaAs MESFET, InP MESFET, Al0.3Ga0.7As/GaAs high electron mobility transistor (HEMT), and GaAs permeable base transistor (PBT) are analytically obtained. The GaAs PBT and GaAs MESFET have higher sensitivity than the InP MESFET. However, the Al0.3Ga0.7As/ GaAs HEMT is observed to have the highest sensitivity. Variations in the small-signal parameters, such as channel conductance, gate-to-source capacitance, and transconductance, as well as transient parameters, such as switching time and power-delay product, of GaAs MESFET with illumination are computed. The computed capacitance and transconductance are compared with the experimentally obtained values and are found to be in fair agreement. Based on these results, the design considerations for an optically controlled MESFET switch are discussed. Finally, variation in device parameter due to optical illumination and its effect on the cutoff frequencies fT and fmax are also investigated.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:34 ,  Issue: 12 )