Cart (Loading....) | Create Account
Close category search window
 

E-Plane Integrated Circuit Filters with Improved Stopband Attenuation (Short Papers)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Improved stopband attenuation is achieved by thick strips, by reduced waveguide sidewall dimensions, and by double planar integrated circuits. In contrast to thick strips which may cause high passband insertion losses and filters with reduced waveguide dimensions which require additional tapers, double planar E-plane integrated circuit filters combine the advantages of low costs, high stopband, and low passband insertion losses. Computer-aided design of a four-resonator Ka -band double metal insert filter achieves a calculated stopband attenuation between 40 and 60 GHz of more than 50 dB, the calculated minimum passband insertion loss is 0.43 dB (measured 1.8 dB). Higher order mode excitation and finite thicknesses of the inserts are included in the calculations.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:32 ,  Issue: 10 )

Date of Publication:

Oct 1984

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.