By Topic

Design of Dielectric Grating Antennas for Millimeter-Wave Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

At theoretical procedure well suited for generating design data on dielectric grating antennas for the millimeter-wave region is presented. The procedure utilizes the effective dielectric constant (EDC) method to determine the phase constant of the leaky modes supported by the antenna structure of finite lateral width. The radiation or leakage constant of these modes is obtained from the relatively simple boundary value problem of dielectric grating antennas of infinite width. For single-beam radiation, the practicably interesting case, the phase and leakage constants completely determine the field distribution in the antenna aperture, from which the directivity gain and radiation pattern are then calculated. The dependence of the antenna characteristics on the dimensions of the radiating structure is presented and discussed for epsilon = 12, the dielectric constant of typical millimeter-wave materials, such as silicon and GaAs.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:31 ,  Issue: 2 )