By Topic

An Analytical Solution of the Lateral Current Spreading and Diffusion Problem in Narrow Oxide Stripe (GaAl)As/GaAs DH Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

An exact solution is presented to the problem of lateral current spreading in the resistive layer of oxide stripe geometry DH lasers. The two-dimensional Laplace equation was solved by conformal mapping using the Schwarz-Christoffel transformation. The diffusion equation containing nonlinear recombination terms was solved numerically. Computed examples demonstrate that the customary one-dimensioned treatment of the resistive layer or the assumption of constant current density under the stripe contact are not always justified, particularly for narrow stripe widths and low specific resistivities. This region of low values of the resistivity and stripe width, however, is of great practical interest in the design of oxide stripe lasers having high thermal stability and kink-free characteristics.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:30 ,  Issue: 4 )