By Topic

Power Design for Gigabit Josephson Logic Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

An ac power system design in described for powering, at near gigahertz frequencies, 16K Josephson latching logic circuits distributed uniformly over 16 chips. The power system distributes a sinusoidal current waveform from a single source to the many chip quadrants through a tree system of thin-film transformers that have branching secondaries and multiple turn primaries to maintain nearly constant current amplitudes throughout the system and small phase skews at the logic-circuit level. The sinusoidal waveform is clipped on-chip to provide the trapezoidal waveform required by the logic circuits. The ratio of the duration of the up-portion of the trapezoidal half-cycle to the half-cycle period (the logic cycle) is defined as the active duty cycle for the logic. The 16K circuit-power design is capable of providing an 80-percent duty cycle at a 1.7-ns logic cycle while keeping current levels in the system below 300 mA. An approximate expression is derived that predicts that for any power-system design of this type the product of the system size, the highest frequency of operation, and the chip-quadrant current level is a constant.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:28 ,  Issue: 5 )