By Topic

MSI High-Speed Low-Power GaAs Integrated Circuits Using Schottky Diode FET Logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A new planar high-density (10-3 mm2/gate) GaAs IC technology has been used for fabricating MSI digital circuits containing up to 75 gates/chip. These digital circuits have potential application for gigabit microwave data transmission and processor systems. The circuits consist of Schottky diode FET logic NOR gates, which have provided propagation delays in the 75-200-ps range with dynamic switching energies as low as 27 fJ/gate on ring oscillator structures. Power dissipation levels are compatible with future LSI/VLSI extensions. Operation of D flip-flops (DFF) as binary ripple dividers (÷2-÷8) was achieved at 1.9-GHz clock rates, and an 8:1 full-data multiplexer and 1:8 data demultiplexer were demonstrated at 1.1-GHz clock rates. This corresponds to equivalent propagation delays in the 100-175-ps range for these MSI circuits. Finally, a 3x3 parallel multiplier containing 75 gates functioned with a propagation delay of 172 ps/gate and with average gate power dissipations of as low as 0.42 mW/gate.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:28 ,  Issue: 5 )