Cart (Loading....) | Create Account
Close category search window
 

Accurate Solution of Microstrip and Coplanar Structures for Dispersion and for Dielectric and Conductor Losses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

For the analysis of coplanar- and microstrip-type structures, a higher order solution of the spectral-domain approach is introduced. Legendre polynomials are used as the basis functions for fields having singularities near the edges, leading to fast convergence to the exact solution. A perturbation technique is combined with the spectral-domain method to evaluate conductor and dielectric losses in microstrip, inverted microstrip, and coupled microstrip in the metallic enclosure. Computations of characteristic impedance and losses incurred in several structures are also presented. Central processing unit (CPU) time on an IBM 360/65 for the zeroth-order approximation ranges from 1 to about 5 s for the whole computation, and increases if higher order of solution is requested for better accuracy. The calculation of attenuation due to conductor losses is found to be particularly sensitive to order of approximation, so that the generally used "zeroth-order" solution is inadequate. A user-oriented program package has been written, including options on order of mode, order of solution (i.e., of approximation), impedance, attenuation, and number of substrates. Although written for single or coupled microstrip, the program can be adapted for arbitrary arrangements of thin coplanar conductors. The program is described separately.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:27 ,  Issue: 7 )

Date of Publication:

Jul 1979

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.