Cart (Loading....) | Create Account
Close category search window

Slow-Wave Propagation Along Variable Schottky-Contact Microstrip Line

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Schottky-contact microstrip lines (SCML) are a special type of transmission line on the semiconducting substrate: the metallic-strip conductor is specially selected to form a rectifying metal-semiconductor transition while the ground plane exhibits an ohmic metallization. Thus the cross section of SCML is similar to that of a Schottky-barrier diode. The resulting voltage-dependent capacitance per unit length causes the nonlinear behavior of such lines. In this paper a detailed analysis of the, slow-wave propagation on SCML is presented, including the effect of metallic losses. Formulas for the propagation constant and characteristic impedance are derived and an equivalent circuit is presented. Conditions for slow-mode behavior are given, particularly taking into account the influence of imperfect conductors and defining the range of many interesting applications. Experimental results performed on Si-SCML are compared with theory.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:24 ,  Issue: 9 )

Date of Publication:

Sep 1976

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.