By Topic

Computation of the Electromagnetic Fields and Induced Temperatures Within a Model of the Microwave-Irradiated Human Eye

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The electromagnetic fields within a detailed model of the human eye and its surrounding bony orbit are calculated for two different frequencies of plane-wave irradiation: 750 MHz and 1.5 GHz. The computation is performed with a finite-difference algorithm for the time-dependent Maxwell's equations, carried out to the sinusoidal steady state. The heating potential, derived from the square of the electric field, is used to calculate the temperatures induced within the eyeball of the model. This computation is performed with the implicit alternating-direction (IAD) algorithm for the heat conduction equation. Using an order-of-magnitude estimate of the heat-sinking capacity of the retinal blood supply, it is determined that a hot spot exceeding 40.4°C occurs at the center of the model eyeball at an incident power level of 100 mW/cm2 at 1.5 GHz.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:23 ,  Issue: 11 )