By Topic

New Theory and Design for Hairpin-Line Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters are preferred filters for microstrip and TEM printed-circuit realizations. This class of filters offers small size and, in general, needs no ground connections for resonators. A new design theory is presented that is based on a sparse capacitance matrix for the array of coupled lines that constitute the filter, as opposed to a sparse-inductance-matrix assumption in previous theories that is much harder to satisfy. It is shown that to a good approximation, hairpin-line filters result from frequency-scaling half-wave parallel-coupled-line filters. Because of this; the bandwidth can be accurately predicted. Design procedures are given for Type-A filters, which are useful up to 20-percent bandwidth. A variety of hybrid hairpin-line/half-wave parallel-coupled-line filters is possible, and their design is explained. Numerical results for a number of designs and experimental results for a 5-percent bandwidth filter are included.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:22 ,  Issue: 5 )