Cart (Loading....) | Create Account
Close category search window
 

Elastic Surface Waves Guided by Thin Films: Gold on Fused Quartz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

To study some of the properties of acoustic waves guided by thin films, experiments on dispersion and transverse tightness of binding were performed in the frequency range 5 MHz to 14 MHz. The movable wedge technique of launching and receiving surface wave signals was utilized. The guidance structure consisted of thin gold films deposited on fused quartz. High resolution experimental results were obtained by modifying the wedges to have a very narrow active region. The data were compared to results predicted by a simplified theoretical model which we have developed. This model is complementary to that of Tiersten in that we match both components of the vector potential while in Tiersten's model one matches a single vector potential component and its normal derivative. Curves calculated by our approach appear to be virtually identical with those of Tiersten for the (width/thickness) ratios treated experimentally, but are much easier to obtain numerically for any particular value of the ratio. For smaller values of the (width/thickness) ratio, our model and that of Tiersten differ slightly. Data for dispersion and mode tightness of binding were found to be in substantial agreement with our theoretical predictions. In addition, the theoretical model predicts features such as location of low-frequency cutoffs and tightness of binding of the antisymmetric modes which have not been completely investigated experimentally.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:17 ,  Issue: 11 )

Date of Publication:

Nov 1969

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.