By Topic

Computer-Aided Small-Signal Characterization of IMPATT Diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

This paper is a discussion of IMPATT wafer small-signal characteristics in the frequency range of 2.0-8.0 GHz. These characteristics have been obtained by computer conversion of reflection phase-gain data. The data handling technique which allows establishment of the desired reference plane and the reduction of the admittance data into the desired equivalent circuit is presented. A calibration procedure using reference impedances consistent with the diode geometry is discussed. The validity of the microwave measurement technique and the data handling process is demonstrated by comparison of the values of junction capacitance determined at microwave frequencies with junction capacitance measurements at 30 MHz. Representative plots are given for wafer conductance and susceptance as a function of frequency with current density as a parameter. In addition, typical values obtained for the circuit elements are presented. These data illustrate the capability of determining package inductance, series resistance as a function of bias voltage, and, with the diode in avalanche, the parallel G, L, and C of the wafer admittance. The diode equivalent circuit was studied as a function of current density to compare results with the existing analytical small-signal theories. This procedure permits the separation of the wafer elements from the parasitic elements of the package. Data obtained from these measurements are extremely useful for ascertaining wafer design parameters and assisting in circuit design.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:17 ,  Issue: 9 )