By Topic

Assumption generation for software component verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Giannakopoulou, D. ; NASA Ames Res. Center, Moffett Field, CA, USA ; Pasareanu, C.S. ; Barringer, H.

Model checking is an automated technique that can be used to determine whether a system satisfies certain required properties. The typical approach to verifying properties of software components is to check them for all possible environments. In reality, however, a component is only required to satisfy properties in specific environments. Unless these environments are formally characterized and used during verification (assume-guarantee paradigm), the results returned by verification can be overly pessimistic. This work defines a framework that brings a new dimension to model checking of software components. When checking a component against a property, our model checking algorithms return one of the following three results: the component satisfies a property for any environment; the component violates the property for any environment; or finally, our algorithms generate an assumption that characterizes exactly those environments in which the component satisfies its required property. Our approach has been implemented in the LTSA tool and has been applied to the analysis of a NASA application.

Published in:

Automated Software Engineering, 2002. Proceedings. ASE 2002. 17th IEEE International Conference on

Date of Conference: