By Topic

Discriminant waveletfaces and nearest feature classifiers for face recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jen-Tzung Chien ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Chia-Chen Wu

Feature extraction, discriminant analysis, and classification rules are three crucial issues for face recognition. We present hybrid approaches to handle three issues together. For feature extraction, we apply the multiresolution wavelet transform to extract the waveletface. We also perform the linear discriminant analysis on waveletfaces to reinforce discriminant power. During classification, the nearest feature plane (NFP) and nearest feature space (NFS) classifiers are explored for robust decisions in presence of wide facial variations. Their relationships to conventional nearest neighbor and nearest feature line classifiers are demonstrated. In the experiments, the discriminant waveletface incorporated with the NFS classifier achieves the best face recognition performance.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 12 )