By Topic

Feature space trajectory methods for active computer vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. A. Sipe ; Cellomics Inc., Pittsburgh, PA, USA ; D. Casasent

We advance new active object recognition algorithms that classify rigid objects and estimate their pose from intensity images. Our algorithms automatically detect if the class or pose of an object is ambiguous in a given image, reposition the sensor as needed, and incorporate data from multiple object views in determining the final object class and pose estimate. A probabilistic feature space trajectory (FST) in a global eigenspace is used to represent 3D distorted views of an object and to estimate the class and pose of an input object. Confidence measures for the class and pose estimates, derived using the probabilistic FST object representation, determine when additional observations are required as well as where the sensor should be positioned to provide the most useful information. We demonstrate the ability to use FSTs constructed from images rendered from computer-aided design models to recognize real objects in real images and present test results for a set of metal machined parts.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:24 ,  Issue: 12 )