Cart (Loading....) | Create Account
Close category search window
 

Efficient dilation, erosion, opening, and closing algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gil, J. ; Dept. of Comput. Sci., Technion-Israel Inst. of Technol., Haifa, Israel ; Kimmel, R.

We propose an efficient and deterministic algorithm for computing the one-dimensional dilation and erosion (max and min) sliding window filters. For a p-element sliding window, our algorithm computes the 1D filter using 1.5 + o(1) comparisons per sample point. Our algorithm constitutes a deterministic improvement over the best previously known such algorithm, independently developed by van Herk (1992) and by Gil and Werman (1993) (the HGW algorithm). Also, the results presented in this paper constitute an improvement over the Gevorkian et al. (1997) (GAA) variant of the HGW algorithm. The improvement over the GAA variant is also in the computation model. The GAA algorithm makes the assumption that the input is independently and identically distributed (the i.i.d. assumption), whereas our main result is deterministic. We also deal with the problem of computing the dilation and erosion filters simultaneously, as required, e.g., for computing the unbiased morphological edge. In the case of i.i.d. inputs, we show that this simultaneous computation can be done more efficiently then separately computing each. We then turn to the opening filter, defined as the application of the min filter to the max filter and give an efficient algorithm for its computation. Specifically, this algorithm is only slightly slower than the computation of just the max filter. The improved algorithms are readily generalized to two dimensions (for a rectangular window), as well as to any higher finite dimension (for a hyperbox window), with the number of comparisons per window remaining constant. For the sake of concreteness, we also make a few comments on implementation considerations in a contemporary programming language.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 12 )

Date of Publication:

Dec 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.