By Topic

Flux maximizing geometric flows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Vasilevskiy ; Java JIT Dev. Group, IBM Canada Ltd., Markham, Ont., Canada ; K. Siddiqi

Several geometric active contour models have been proposed for segmentation in computer vision and image analysis. The essential idea is to evolve a curve (in 2D) or a surface (in 3D) under constraints from image forces so that it clings to features of interest in an intensity image. Recent variations on this theme take into account properties of enclosed regions and allow for multiple curves or surfaces to be simultaneously represented. However, it is still unclear how to apply these techniques to images of narrow elongated structures, such as blood vessels, where intensity contrast may be low and reliable region statistics cannot be computed. To address this problem, we derive the gradient flows which maximize the rate of increase of flux of an appropriate vector field through a curve (in 2D) or a surface (in 3D). The key idea is to exploit the direction of the vector field along with its magnitude. The calculations lead to a simple and elegant interpretation which is essentially parameter free and has the same form in both dimensions. We illustrate its advantages with several level-set-based segmentations of 2D and 3D angiography images of blood vessels.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:24 ,  Issue: 12 )