By Topic

Channel assignment with QoS guarantees for a multiclass multicode CDMA system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mi-Sun Do ; Dept. of Electr. Eng., Yonsei Univ., Seoul, South Korea ; Youngjun Park ; Jai-Yong Lee

In a wireless system that supports multimedia services, each traffic requires different quality of service (QoS) at both communication on radio links and connection admission. We initially derive the uplink capacity satisfying the QoS constraint on radio links in a multiclass multicode code-division multiple-access (CDMA) system. Based on the derived capacity, the number of channel elements, which is one of the system resources, is determined. Then, we define the QoS parameters associated with connection processes. To guarantee the defined QoS at the connection level, under given channel elements, we propose a channel-assignment scheme with dynamic priority adjustment (DPA). The proposed scheme gives multipriority to different traffic classes. Real-time classes can preempt non-real-time classes with restricted preemptive priority. Such restriction is regulated by preemption-free code channels and a buffer threshold for non-real-time classes. Among real-time classes, different priorities are assigned to each traffic class by code reservation parameters. These multipriority parameters are dynamically adjusted in order to guarantee different QoS requirements. We analyze the DPA scheme by the matrix-geometric method, and evaluate the performance of each traffic class. The results show that the proposed scheme flexibly guarantees QoS depending on traffic loading condition and achieves high channel utilization.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:51 ,  Issue: 5 )