By Topic

Angular power distribution and mean effective gain of mobile antenna in different propagation environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

We measured the elevation angle distribution and cross-polarization power ratio of the incident power at a mobile station in different radio propagation environments at 2.15 GHz frequency. A novel measurement technique was utilized, based on a wideband channel sounder and a spherical dual-polarized antenna array at the receiver. Data were collected over 9 km of continuous measurement routes, both indoor and outdoor. Our results show that in non-line-of-sight situations, the power distribution in elevation has a shape of a double-sided exponential function, with different slopes on the negative and positive sides of the peak. The slopes and the peak elevation angle depend on the environment and base-station antenna height. The cross-polarization power ratio varied within 6.6 and 11.4 dB, being lowest for indoor and highest for urban microcell environments. We applied the experimental data for analysis of the mean effective gain (MEG) of several mobile handset antenna configurations, with and without the user's head. The obtained MEG values varied from approximately -5 dBi in free space to less than -11 dBi beside the head model. These values are considerably lower than what is typically used in system specifications. The result shows that considering only the maximum gain or total efficiency of the antenna is not enough to describe its performance in practical operating conditions. For most antennas, the environment type has little effect on the MEG, but clear differences exist between antennas. The effect of the user's head on the MEG depends on the antenna type and on which side of the head the user holds the handset.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:51 ,  Issue: 5 )