By Topic

A Bayesian approach to problems in stochastic estimation and control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Y. Ho ; Harvard Univ., Cambridge, MA, USA ; R. Lee

In this paper, a general class of stochastic estimation and control problems is formulated from the Bayesian Decision-Theoretic viewpoint. A discussion as to how these problems can be solved step by step in principle and practice from this approach is presented. As a specific example, the closed form Wiener-Kalman solution for linear estimation in Gaussian noise is derived. The purpose of the paper is to show that the Bayesian approach provides; 1) a general unifying framework within which to pursue further researches in stochastic estimation and control problems, and 2) the necessary computations and difficulties that must be overcome for these problems. An example of a nonlinear, non-Gaussian estimation problem is also solved.

Published in:

IEEE Transactions on Automatic Control  (Volume:9 ,  Issue: 4 )