Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Linear-adaptive flight control design for re-entry vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Horowitz, I.M. ; Hughes Aircraft Company, Culver City, CA, USA

This paper presents a linear-adaptive design technique intended for the very severe parameter variation problems encountered in lifting re-entry vehicles and in flight control of modern aircraft. The technique is illustrated by means of a detailed application to the pitch axis stability augmentation system of the X-15. The problem is to obtain satisfactory vehicle response to command inputs and disturbances, despite the extremely large variations in vehicle parameters, which are encountered when Mach number varies from 6.0 to 0.2 and altitude varies from 160,000 ft to ground level. The given time domain specifications are translated into approximately equivalent frequency response restrictions, enabling the design details to be executed in the frequency domain. This results in the maximum economy in the gain and bandwidth of the system loop transmission. The design is verified by finding the time responses for some of the extreme conditions. The practicality of the design is discussed in terms of the gain and bandwidth demands on the compensating networks, the higher order airframe dynamics and the effects of any overdesign on the system saturation tendencies.

Published in:

Automatic Control, IEEE Transactions on  (Volume:9 ,  Issue: 1 )