By Topic

A technique of linear system identification using correlating filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lichtenberger, W. ; University of Illinois, Urbana, IL, USA

A technique for measuring the impulse response of linear processes while they are on line is described. Such an identification of process dynamics is necessary in process-adaptive control systems. A testing signal and correlating filter are employed after the manner of Turin. Such a procedure requires no multiplier, and the output of the filter is the impulse response as a continuous function of real time. To reduce accompanying output noise, the method of adding coherently the results of a number of tests made in succession is proposed. This idea is applied to the measurement of a member of an ensemble of slowly varying impulse responses. Optimum design of both the correlating filter and the necessary test signal is determined on the basis of minimum mean-square error of the resulting estimate. The optimization of the number of tests to be included in a measurement is described. The general results are applied to the case of a single, slowly time-varying process. In addition to optimum design, normalized curves showing the optimum number of tests for a particular mode of variation are included. A second application is made to the problem of measuring a member of an ensemble of fixed processes. The results of a digital computer simulation of this case are given.

Published in:

Automatic Control, IRE Transactions on  (Volume:6 ,  Issue: 2 )