Cart (Loading....) | Create Account
Close category search window
 

Analysis of a nonlinear control system for stabilizing a missile

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Atran, L. ; Westinghouse Electric Corp., Baltimore, MD, USA

An autopilot with attitude and rate feedback, representative system lags, and a two-way relay servo with inherent hysteresis is considered for roll control of a missile with peripheral, tangentially operating jets. This type of control system is shown to produce a steady-state oscillation. Missile dynamics in the presence of this hunting are developed and the relationships governing angular position and rates are found to be functions of the oscillation frequency, control force magnitude, and missile constants (geometry and weight). The describing function technique is utilized to determine graphically the relationship among frequency, hysteresis band, and system time delays. A comparison is made between the root locus and amplitude-phase presentation. An analog computer study of system behavior is presented to illustrate the agreement between the analysis and system performance.

Published in:

Automatic Control, IRE Transactions on  (Volume:3 ,  Issue: 1 )

Date of Publication:

Nov 1957

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.