Cart (Loading....) | Create Account
Close category search window
 

Robust stability with structured real parameter perturbations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Biernacki, R. ; Technical University of Warsaw, Warsaw, Poland ; Humor Hwang ; Bhattacharyya, S.P.

This paper considers the problem of robust stabilization of a linear time-invariant system subject to variations of a real parameter vector. For a given controller the radius of the largest stability hypersphere in this parameter space is calculated. This radius is a measure of the stability margin of the closed-loop system. The results developed are applicable to all systems where the closed-loop characteristic polynomial coefficients are linear functions of the parameters of interest. In particular, this always occurs for single-input (multioutput) or single-output (multiinput) systems where the transfer function coefficients are linear or affine functions of the parameters. Many problems with transfer function coefficients which are nonlinear functions of physical parameters can be cast into this mathematical framework by suitable weighting and redefinition of functions of physical parameters as new parameters. The largest stability hyperellipsoid for the case of weighted perturbations and a stability polytope in parameter space are also determined. Based on these calculations a design procedure is proposed to robustify a given stabilizing controller. This algorithm iteratively enlarges the stability hypersphere or hyperellipsoid in parameter space and can be used to design a controller Io stabilize a plant subject to given ranges of parameter excursions. These results are illustrated by an example.

Published in:

Automatic Control, IEEE Transactions on  (Volume:32 ,  Issue: 6 )

Date of Publication:

Jun 1987

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.