By Topic

Sensitivity analysis and optimization of throughput in a production line with blocking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xi-Ren Cao ; Digital Equipment Corporation, Marlboro, MA, USA ; Ho, Y.-C.

Production lines with limited storage capacities can be modeled as cyclic queueing networks with finite buffers and general service times. A new technique, called perturbation analysis of discrete event dynamic systems, is applied to these queueing networks. An estimate of the gradient of the system throughput is obtained by perturbation analysis based on only one sample trajectory of the system. We show that the estimate is strongly consistent. Using this perturbation analysis estimate of gradient, we can apply the Robbins-Monro stochastic procedure in optimizing the system throughput. Compared to the conventional Kiefer-Wolfowitz optimization procedure, this approach saves a large amount of computation. For a real system, the gradient estimate can be obtained without changing any parameters in the system. The results also hold for systems with general routing but in which no server can block more than one other server simultaneously.

Published in:

Automatic Control, IEEE Transactions on  (Volume:32 ,  Issue: 11 )