Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Stability analysis of hybrid composite dynamical systems: Descriptions involving operators and difference equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mousa, M. ; Iowa State University, Ames, IA, USA ; Miller, R. ; Michel, A.N.

We address the stability analysis of composite hybrid dynamical feedback systems of the type depicted in Fig. 1, consisting of a block (usually the plant) which is described by an operator L and of a finite-dimensional block described by a system of difference equations (usually a digital controller). We establish results for the well-posedness, attractivity, asymptotic stability, uniform boundedness, asymptotic stability in the large, and exponential stability in the large for such systems. The hypotheses of our results are phrased in terms of the I/O properties of L and in terms of the Lyapunov stability properties of the subsystem described by the indicated difference equations. The applicability of our results is demonstrated by two specific examples.

Published in:

Automatic Control, IEEE Transactions on  (Volume:31 ,  Issue: 7 )