By Topic

Exact finite-dimensional nonlinear filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Daum, Frederick E. ; Raytheon Company, Wayland, MA, USA

A new nonlinear filter is derived for continuous-time processes with discrete-time measurements. The filter is exact, and it can be implemented in real time with a computational complexity that is comparable to the Kalman filter. This new filter includes both the Kalman filter and the discrete-time version of the Benes filter as special cases. Moreover, the new theory can handle a large class of nonlinear estimation problems that cannot be solved using the Kalman or discrete-time Benes filters. A simple approximation technique is suggested for practical applications in which the dynamics do not satisfy the required conditions exactly. This approximation is analogous to the so-called "extended Kalman filter" [10], and it represents a generalization of the standard linearization method.

Published in:

Automatic Control, IEEE Transactions on  (Volume:31 ,  Issue: 7 )