By Topic

Decentralized learning in finite Markov chains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Wheeler ; Sandia National Laboratories, Livermore, CA, USA ; K. Narendra

The principal contribution of this paper is a new result on the decentralized control of finite Markov chains with unknown transition probabilities and rewords. One decentralized decision maker is associated with each state in which two or more actions (decisions) are available. Each decision maker uses a simple learning scheme, requiring minimal information, to update its action choice. It is shown that, if updating is done in sufficiently small steps, the group will converge to the policy that maximizes the long-term expected reward per step. The analysis is based on learning in sequential stochastic games and on certain properties, derived in this paper, of ergodic Markov chains. A new result on convergence in identical payoff games with a unique equilibrium point is also presented.

Published in:

IEEE Transactions on Automatic Control  (Volume:31 ,  Issue: 6 )