Cart (Loading....) | Create Account
Close category search window
 

The control of robot manipulators with bounded input

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Spong, M.W. ; University of Illinois at Urbana-Champaign, Urbana, IL, USA ; Thorp, J.S. ; Kleinwaks, J.M.

The problem of tracking a desired trajectory in the state space of ann-link robotic manipulator with bounds on the allowable input torque is considered. Using a so-called optimal decision strategy (ODS), a pointwise optimal control law is derived which, at each timet, minimizes the deviation between the vector of joint accelerations and a desired joint acceleration vector, subject to the input constraints. The design of the optimal control law is reduced to the solution of a quadratic programming problem which is solved using the primal-dual method. The solution gives an on-line feedback control scheme for trajectory following in the presence of input constraints. In addition, we extend the above optimal decision strategy to the case where the controller design is based on a simplified model or where the plant itself is imprecisely known. The resulting torque optimization scheme may be incorporated into any existing control scheme to account for input bounds. This has important implications for the problem of deriving robust control schemes that take into account parameter uncertainty and model simplification. Simulations are presented for the case of a three-link manipulator with bounded torque, and our results are compared to the computed torque method. Our simulations show that by optimally adjusting the input torque to each joint when one or more of them saturates, significant improvement in tracking performance can result.

Published in:

Automatic Control, IEEE Transactions on  (Volume:31 ,  Issue: 6 )

Date of Publication:

Jun 1986

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.