By Topic

Signal estimation for second-order vector difference equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Iskanderani, A.I. ; University of Michigan, Ann Arbor, MI, USA ; McClamroch, N.H.

This note considers a linear estimation problem for a stochastic process viewed as the output signal of a linear second-order vector difference equation (VDE) driven by a white-noise input. An innovations approach is applied directly to develop the one-stage prediction estimator and associated error covariances. It is shown that the estimator can be expressed as a second-order recursion that preserves the mathematical structure of the given signal model with innovations feedback loops. It is also shown that the innovations can be computed through a first-order recursion in terms of one-stage prediction estimates and the measurements.

Published in:

Automatic Control, IEEE Transactions on  (Volume:30 ,  Issue: 8 )