By Topic

Robust stability of systems with integral control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
M. Morari ; California Institute of Technology, Pasadena, CA, USA

A number of necessary and sufficient conditions are derived, which must be satisfied by the plant d.c. gain matrix of a linear time invariant system in order for an integral controller to exist for which the closed loop system is stable. Based on these results, the robustness of integral control systems is analyzed, i.e., the family of plants is defined which are stable when controlled with the same integral controller. Conditions for actuator/sensor failure tolerance of systems with integral control are also given. Finally, parallels are drawn between the results of this paper and the bifurcation theory of nonlinear systems.

Published in:

IEEE Transactions on Automatic Control  (Volume:30 ,  Issue: 6 )