By Topic

A linear-system-theoretic view of discrete-event processes and its use for performance evaluation in manufacturing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cohen, G. ; Centre d''Automatique et d''Informatique, Fountainebleau, Cedex, France ; Dubois, D. ; Quadrat, J. ; Viot, M.

A discrete-event system is a system whose behavior can be described by means of a set of time-consuming activities, performed according to a prescribed ordering. Events correspond to starting or ending some activity. An analogy between linear systems and a class of discrete-event systems is developed. Following this analogy, such discrete-event systems can be viewed as linear, in the sense of an appropriate algebra. The periodical behavior of closed discrete-event systems, i.e., involving a set of repeatedly performed activities, can be totally characterized by solving an eigenvalue and eigenvector equation in this algebra. This problem is numerically solved by an efficient algorithm which basically consists of finding the shortest paths from one node to all other nodes in a graph. The potentiality of this approach for the performance evaluation of flexible manufacturing systems is emphasized; the case of a flowshop-like production process is analyzed in detail.

Published in:

Automatic Control, IEEE Transactions on  (Volume:30 ,  Issue: 3 )