By Topic

The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton, and Moore

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Hyland ; Harris Corporation, Melbourne, FL, USA ; D. Bernstein

First-order necessary conditions for quadratically optimal reduced-order modeling of linear time-invariant systems are derived in the form of a pair of modified Lyapunov equations coupled by an oblique projection which determines the optimal reduced-order model. This form of the necessary conditions considerably simplifies previous results of Wilson [1] and clearly demonstrates the quadratic extremality and nonoptimality of the balancing method of Moore [2]. The possible existence of multiple solutions of the optimal projection equations is demonstrated and a relaxation-type algorithm is proposed for computing these local extrema. A component-cost analysis of the model-error criterion similar to the approach of Skelton [3] is utilized at each iteration to direct the algorithm to the global minimum.

Published in:

IEEE Transactions on Automatic Control  (Volume:30 ,  Issue: 12 )