By Topic

Fixed point implementation of fast Kalman predictors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. Scharf ; University of Rhode Island, Kingston, RI, USA ; S. Sigurdsson

In this note we study scaling rules and roundoff noise variances in a fixed-point implementation of the Kalman predictor for an ARMA time series observed noise free. The Kalman predictor is realized in a fast form that uses the so-called fast Kalman gain algorithm. The algorithm for the gain is fixed point. Scaling rules and expressions for rounding error variances are derived. The numerical results show that the fixed-point realization performs very close to the floating point realization for relatively low-order ARMA time series that are not too narrow band. The predictor has been implemented in 16-bit fixed-point arithmetic on an INTEL 8086 microprocessor, and in 16-bit floating-point arithmetic on an INTEL 8080. Fixed-point code was written in Assembly language and floating-point code was written in Fortran. Experimental results were obtained by running the fixed- and floating-point filters on identical data sets. All experiments were carried out on an INTEL MIDS 230 development system.

Published in:

IEEE Transactions on Automatic Control  (Volume:29 ,  Issue: 9 )