Cart (Loading....) | Create Account
Close category search window

The optimal projection equations for fixed-order dynamic compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hyland, D. ; Harris Corp., GASD, Melbourne, FL, USA ; Bernstein, D.

First-order necessary conditions for quadratically optimal, steady-state,fixed-order dynamic compensation of a linear, time-invariant plant in the presence of disturbance and observation noise are derived in a new and highly simplified form. In contrast to the pair of matrix Riccati equations for the full-order LQG case, the optimal steady-state fixed-order dynamic compensator is characterized by four matrix equations (two modified Riccati equations and two modified Lyapunov equations) coupled by a projection whose rank is precisely equal to the order of the compensator and which determines the optimal compensator gains. The coupling represents a graphic portrayal of the demise of the classical separation principle for the reduced-order controller case.

Published in:

Automatic Control, IEEE Transactions on  (Volume:29 ,  Issue: 11 )

Date of Publication:

Nov 1984

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.