By Topic

Convergence and asymptotic agreement in distributed decision problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsitsiklis, J.N. ; Massachusetts Institute of Technology (aka MIT), Cambridge, MA, USA ; Athans, M.

We consider a distributed team decision problem in which different agents obtain from the environment different stochastic measurements, possibly at different random times, related to the same uncertain random vector. Each agent has the same objective function and prior probability distribution. We assume that each agent can compute an optimal tentative decision based upon his own observation and that these tentative decisions are communicated and received, possibly at random times, by a subset of other agents. Conditions for asymptotic convergence of each agent's decison sequence and asymptotic agreement of all agents' decisions are derived.

Published in:

Automatic Control, IEEE Transactions on  (Volume:29 ,  Issue: 1 )