By Topic

Recursive input-output and state-space solutions for continuous-time linear estimation problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kailath, T. ; Stanford University, Stanford, CA, USA ; Ljung, L. ; Morf, M.

A general linear least-squares estimation problem is considered. It is shown how the optimal filters for filtering and smoothing can be recursively and efficiently calculated under certain structural assumptions about the covariance functions involved. This structure is related to an index known as the displacement rank, which is a measure of non-Toeplitzness of a covariance kernel. When a state space type structure is added, it is shown how the Chandrasekhar equations for determining the gain of the Kalman-Bucy filter can be derived directly from the covariance function information; thus we are able to imbed this class of state-space problems into a general input-output framework.

Published in:

Automatic Control, IEEE Transactions on  (Volume:28 ,  Issue: 9 )