By Topic

Parameter identification in a class of nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Knapp, C.H. ; University of Connecticut, Storrs, CT, USA ; Pal, P.K.

Two approaches are proposed for on-line identification of parameters in a class of nonlinear discrete-time systems. The system is modeled by state equations in which state and input variables enter nonlinearly in general polynomial form, while unknown parameters and random disturbances enter linearly. All states and inputs must be observed with measurement errors represented by white Gaussian noise having known covariance. System disturbances are also white and Gaussian with finite, but unknown, covariance. One method of parameter estimation is based upon a least squares approach, the second is a related stochastic approximation algorithm (SAA). Under fairly mild conditions the estimate derived from the least squares algorithm (LSA) is shown to converge in probability to the correct parameter; the SAA yields an estimate which converges in mean square and with probability 1. Examples illustrate convergence of the LSA which even in recursive form requires inversion of a matrix at each step. The SAA requires no matrix inversions, but experience with the algorithm indicates that convergence is slow relative to that of the LSA.

Published in:

Automatic Control, IEEE Transactions on  (Volume:28 ,  Issue: 4 )