By Topic

Simultaneous identification and adaptive control of unknown systems over finite parameter sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kumar, P. ; University of Maryland Baltimore County, Baltimore, MD, USA

The problem considered is one of simultaneously identifying an unknown system while adequately controlling it. The system can be any fairly general discrete-time system and the cost criterion can be either of a discounted type or of a long-term average type, the chief restriction being that the unknown parameter lies in a finite parameter set. For a previously introduced scheme of identification and control based on "biased" maximum likelihood estimates, it is shown that 1) every Cesaro-limit point of the parameter estimates is "closed-loop equivalent" to the unknown parameter; 2) for both the discounted and long-term average cost criteria, the adaptive control law Cesaro-converges to the set of optimal control laws; and 3) in the case of the long-term average cost criterion, the actual cost incurred by the use of the adaptive controller is optimal and cannot be bettered even if one knew the value of the unknown parameter at the start.

Published in:

Automatic Control, IEEE Transactions on  (Volume:28 ,  Issue: 1 )