By Topic

The asymptotic minimum variance estimate of stationary linear single output processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shaked, U. ; Tel-Aviv University, Tel-Aviv, Israel ; Bobrovsky, B.

The problem of minimum error variance estimation of single output linear stationary processes in the presence of weak measurement noise is considered. By applyingsdomain analysis to the case of single input systems and white observation noise, explicit and simple expressions are obtained for the error covariance matrix of estimate and the optimal Kalman gains both for minimum- and nonminimum-phase systems. It is found that as the noise intensity approaches zero, the error covariance matrix of estimating the output and its derivatives becomes insensitive to uncertainty, in the system parameters. This matrix depends only on the shape of the high frequency tail of the power-density spectrum of the observation, and thus it can be easily determined from the system transfer function. The theory developed is extended to deal with white measurement noise in multiinput systems where an analog- to the single input nonminimum-phase case is established. The results are also applied to colored observation noise problems and a simple method to derive the minimum error covariance matrices and the optimal filter transfer functions is introduced.

Published in:

Automatic Control, IEEE Transactions on  (Volume:26 ,  Issue: 2 )