By Topic

Principal component analysis in linear systems: Controllability, observability, and model reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Moore, B. ; University of Toronto, Toronto, Canada

Kalman's minimal realization theory involves geometric objects (controllable, unobservable subspaces) which are subject to structural instability. Specifically, arbitrarily small perturbations in a model may cause a change in the dimensions of the associated subspaces. This situation is manifested in computational difficulties which arise in attempts to apply textbook algorithms for computing a minimal realization. Structural instability associated with geometric theories is not unique to control; it arises in the theory of linear equations as well. In this setting, the computational problems have been studied for decades and excellent tools have been developed for coping with the situation. One of the main goals of this paper is to call attention to principal component analysis (Hotelling, 1933), and an algorithm (Golub and Reinsch, 1970) for computing the singular value decompositon of a matrix. Together they form a powerful tool for coping with structural instability in dynamic systems. As developed in this paper, principal component analysis is a technique for analyzing signals. (Singular value decomposition provides the computational machinery.) For this reason, Kalman's minimal realization theory is recast in terms of responses to injected signals. Application of the signal analysis to controllability and observability leads to a coordinate system in which the "internally balanced" model has special properties. For asymptotically stable systems, this yields working approximations ofX_{c}, X_{bar{o}}, the controllable and unobservable subspaces. It is proposed that a natural first step in model reduction is to apply the mechanics of minimal realization using these working subspaces.

Published in:

Automatic Control, IEEE Transactions on  (Volume:26 ,  Issue: 1 )