By Topic

Computation of matrix fraction descriptions of linear time-invariant systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Patel, R. ; University of Manchester, Manchester, England

In this paper, algorithms are presented for obtaining relatively prime matrix fraction descriptions (MFD's) of linear time-invariant systems. Orthogonal coordinate transformations are used to reduce a given state-space model to one whose state matrix is in "block Hessenberg" form. The observability (controllability) indexes of the system are also obtained in the process. A recursive algorithm is then described for obtaining a relatively prime MFD from the block Hessenberg representation. It is then shown that some simplification can be made in the recursive algorithm by first reducing the block Hessenberg form, by means of a nonsingular (triangular) coordinate transformation, to a more compact form, such as the "block Frobenius" form. A permutation of the state variables of the block Frobenius form yields a canonical representation similar to the Luenberger canonical form. Some numerical and other properties of the algorithms are discussed, and the use of the algorithms is illustrated by numerical examples. The numerical performance of the algorithms is also compared with that of the structure algorithm of Wolovich and Falb.

Published in:

Automatic Control, IEEE Transactions on  (Volume:26 ,  Issue: 1 )