By Topic

On the numerical solution of the discrete-time algebraic Riccati equation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pappas, T. ; Massachusetts Institute of Technology, Cambridge, MA, USA ; Laub, A.J. ; Sandell, Nils R.

In this paper we shall present two new algorithms for solution of the diserete-time algebraic Riccati equation. These algorithms are related to Potter's and to Laub's methods, but are based on the solution of a generalized rather than an ordinary eigenvalue problem. The key feature of the new algorithms is that the system transition matrix need not be inverted. Thus, the numerical problems associated with an ill-conditioned transition matrix do not arise and, moreover, the algorithm is directly applicable to problems with a singular transition matrix. Such problems arise commonly in practice when a continuous-time system with time delays is sampled.

Published in:

Automatic Control, IEEE Transactions on  (Volume:25 ,  Issue: 4 )