By Topic

Necessary and sufficient conditions for delay-independent stability of linear autonomous systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lewis, R. ; University of Newcastle, Newcastle, N.S.W., Australia ; Anderson, B.D.O.

Strict quasi-diagonal dominance of the system matrix is known to be sufficient for a linear autonomous system with arbitrary time delays in off-diagonal interactions to be stable. A small perturbation of the matrix yields a perturbed system with the same dominance, and, hence, stability properties. In this paper, it is shown that quasi-diagonal dominance is also necessary for stability with respect to small perturbations and arbitrary off-diagonal time delays. Weaker necessary conditions are given for systems which are themselves stable for all time delays, but which have perturbations that are unstable for certain delays.

Published in:

Automatic Control, IEEE Transactions on  (Volume:25 ,  Issue: 4 )