By Topic

An algorithm for tracking multiple targets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Reid, D.B. ; Lockheed Palo Alto Research Laboratory, Palo Alto, CA, USA

An algorithm for tracking multiple targets in a cluttered enviroment is developed. The algorithm is capable of initiating tracks, accounting for false or missing reports, and processing sets of dependent reports. As each measurement is received, probabilities are calculated for the hypotheses that the measurement came from previously known targets in a target file, or from a new target, or that the measurement is false. Target states are estimated from each such data-association hypothesis using a Kalman filter. As more measurements are received, the probabilities of joint hypotheses are calculated recursively using all available information such as density of unknown targets, density of false targets, probability of detection, and location uncertainty. This branching technique allows correlation of a measurement with its source based on subsequent, as well as previous, data. To keep the number of hypotheses reasonable, unlikely hypotheses are eliminated and hypotheses with similar target estimates are combined. To minimize computational requirements, the entire set of targets and measurements is divided into clusters that are solved independently. In an illustrative example of aircraft tracking, the algorithm successfully tracks targets over a wide range of conditions.

Published in:

Automatic Control, IEEE Transactions on  (Volume:24 ,  Issue: 6 )