By Topic

A new approach to differential dynamic programming for discrete time systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ohno, K. ; Kyoto University, Kyoto, Japan

This paper proposes a new differential dynamic programming algorithm for solving discrete time optimal control problems with equality and inequality constraints on both control and state variables and proves its convergence. The present algorithm is different from differential dynamic programming algorithms developed in [10]-[15], which can hardly solve optimal control problems with inequality constraints on state variables and whose convergence has not been proved. Composed of iterative methods for solving systems of nonlinear equations, it is based upon Kuhn-Tucker conditions for recurrence relations of dynamic programming. Numerical examples show file efficiency of the present algorithm.

Published in:

Automatic Control, IEEE Transactions on  (Volume:23 ,  Issue: 1 )