By Topic

Reduced order state estimators for discrete-time stochastic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fairman, F.W. ; Queen''s University, Kingston, Ontario, Canada

A reduced order, least squares, state estimator is developed for linear discrete-time systems having both input disturbance noise and output measurement noise with no output being free of measurement noise. The order reduction is achieved by using a Luenberger observer in connection with some of the system outputs and a Kalman filter to estimate the state of the Luenberger observer. The order of the resulting state estimator is reduced from the order of the usual Kalman filter system state estimator by the number of system outputs selected for use as inputs to the Luenberger Observer. The manner in which the noise associated with the selected system outputs affects the state estimation error covariance provides considerable insight into the compromise being attempted.

Published in:

Automatic Control, IEEE Transactions on  (Volume:22 ,  Issue: 4 )