By Topic

Linear fixed-point smoothing by using functional analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Omatu ; Univ. of Tokushima, Tokushima, Japan ; T. Soeda ; Y. Tomita

A new approach to the fixed-point smoothing problem for linear stochastic distributed parameter systems is proposed by using functional analysis. The number of sensor locations is assumed to be finite and the error criterion is based on the unbiased and least-squares estimations. The algorithm for an optimal fixed-point smoothing estimate is derived by using Itô's stochastic calculus in Hilbert spaces. By applying the kernel theorem to these results, a family of partial differential equations for the optimal fixed-point smoothing estimate is derived. The existence and uniqueness theorems concerning the solutions for both the smoothing gain and the smoothing estimator equations are proved. Finally, usefulness of the algorithm is illustrated with a numerical example.

Published in:

IEEE Transactions on Automatic Control  (Volume:22 ,  Issue: 1 )