By Topic

On the steering of automated vehicles: Theory and experiment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fenton, R. ; Ohio State University, Columbus, OH, USA ; Melocik, G. ; Olson, K.

Several facets of the automatic lateral control of individual ground vehicles are considered in detail. First, a path-dependent coordinate system for describing vehicle motion is defined, and the availability of motion quantities for control purposes is specified. Second, the lateral dynamics of a typical U.S. passenger sedan are empirically obtained and validated with data from full-scale studies. Third, various designs, in which different types of compensation are employed, are evaluated in terms of specified requirements and attractive candidates are specified. Finally, several controller designs were tested under full-scale conditions wherein a wire-reference configuration and a dual-mode test vehicle were employed. The latter was automatically steered on both straight and curving roads at speeds up to 35.8 m/s (80 mph). In one typical case, the maximum tracking error observed was 0.0635 m and occurred both when a sidewind was present and when the vehicle entered a curving section of roadway. Excellent lateral control-close tracking, good insensitivity to disturbance forces, and a comfortable ride-can be obtained using a relatively simple controller.

Published in:

Automatic Control, IEEE Transactions on  (Volume:21 ,  Issue: 3 )